Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes
Naoji Matsuhisa1, Daishi Inoue2, Peter Zalar1,3, Hanbit Jin1, Yorishige Matsuba1,3, Akira Itoh1,3, Tomoyuki Yokota1,3, Daisuke Hashizume2 and Takao Someya1,2,3,4
1Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
2Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
3Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency (JST), 2-11-16, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
4Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
Nature Materials 16, 834–840 (2017)
Someya lab at the University of Tokyo is famous for printable and stretchable electronics for healthcare and wearable device applications. In this research, silver nanoparticles were used as conductive materials in flexible sensor and actuator networks, expecting large-area manufacturing using printing technologies. In the fabrication of stretchable pressure and temperature sensor, Samco UV-ozone cleaner UV-1 was used for UV curing of photoresist PSR-301A. Samco offers multiple systems of surface treatment (plasma cleaning and UV-ozone cleaning) for device fabrication and material research.