20 Nov

Deputy Prime Minister of Liechtenstein Meets with Samco Chairman and CEO Osamu Tsuji

Samco 2016 NEWS, NEWS

Deputy Prime Minister of Liechtenstein Thomas Zwiefelhofer invited Samco Chairman and CEO Osamu Tsuji, samco-ucp President Christian Linder and samco-ucp Director Nakanobu Seki to the country’s government building in Vaduz at the beginning of November in order to express his gratitude to Samco for making Liechtenstein its sales and service base in Europe through its subsidiary samco-ucp.

READ MORE

16 Nov

Scientific Paper on β-Ga2O3 MOSFET Fabrication from U.S. Naval Research Laboratory

Samco 2016 Customer, Samco Customer Publication, Surface Treatment, UV-Ozone

Communication—A (001) β-Ga2O3 MOSFET with +2.9 V Threshold Voltage and HfO2 Gate Dielectric

Marko J. Tadjerz, Nadeemullah A. Mahadik, Virginia D. Wheeler, Evan R. Glaser, Laura Ruppalt, Andrew D. Koehler, Karl D. Hobart, Charles R. Eddy Jr. and Fritz J. Kub
United States Naval Research Laboratory, Washington, DC 20375, USA
ECS J. Solid State Sci. Technol. 2016 volume 5, issue 9, P468-P470

Gallium Oxide (Ga2O3) is a wide bandgap material with high breakdown voltage, and it is a promising material for power device applications. Compared to other wide bandgap materials such as Silicon Carbide (SiC) and Gallium Nitride (GaN), the device research using this material is still primitive. However, β-Ga2O3 substrates are commercially available, and more and more researchers are getting interested in its unique material properties.

Here, β-Ga2O3 MOSFET was fabricated using commercially available β-Ga2O3 substrates. Samco UV-Ozone Cleaner at United States Naval Research Laboratory was used for surface cleaning of SiO2/Si substrate in sample preparation.

15 Nov

Visit Samco’s Booth at SEMICON JAPAN 2016

Samco 2016 Events, Events

When: December 12 – 14
Where: Tokyo Big Sight, Tokyo, Japan
Booth: 4420(HALL 4)

Come see us at SEMICON JAPAN 2016.

Samco will have a booth on ICP plasma etching systems, plasma CVD systems, double-chamber Si Deep RIE systems and ALD systems for multiple applications of device fabrication.

SEMICON JAPAN 2016 Website

10 Nov

Scientific Paper on Anti-reflective Surface Fabrication by Si Plasma Etch from Yokohoma National University Team

Samco 2016 Customer, Samco Customer Publication, Si Etch, Silicon/Dielectrics Etch

Anti-reflective surfaces: Cascading nano/microstructuring

Yoshiaki Nishijima1 Ryosuke Komatsu1 Shunsuke Ota1, Gediminas Seniutinas2 Armandas Balčytis2,3 and Saulius Juodkazis2
1 Department of Electrical and Computer Engineering, Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-Ku, Yokohama 240-8501, Japan
2 Centre for Micro-Photonics, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
3 Institute of Physics, Center for Physical Sciences and Technology, 231 Savanoriu¸ Avenue, LT-02300 Vilnius, Lithuania
APL PHOTONICS 1, 076104 (2016)

Anti-reflective surfaces were created employing plasma etching technologies. Samco ICP-RIE etcher was used for black silicon plasma etching (b-Si) to fabricate nanospike structures using fluorine chemistry.

Silicon Periodic Table

For more process capabilities of our silicon plasma etching including the Bosch Process Etching, please visit the process data pages below.

Silicon Plasma Etching (RIE etch or ICP-RIE)
Deep Silicon Trench/Via Hole Etching using the Bosch Process

10 Nov

Scientific Paper on Polymer Waveguide Modulator Fabrication Using TiO2 Plasma Etching from Kyushu University Team

Samco 2016 Customer, Other Materials Etch, Photonic Devices, Samco Customer Publication, TiO2 Etch

An electro-optic polymer-cladded TiO2 waveguide modulator

Feng Qiu1 Hiroki Miura2, Andrew M. Spring1, Jianxun Hong1, Daisuke Maeda3, Masa-aki Ozawa3, Keisuke Odoi3 and Shiyoshi Yokoyama1,2
1 Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen Kasuga-city, Fukuoka 816-8580, Japan
2 Department of Molecular and Material Sciences, Kyushu University, 6-1 Kasuga-koen Kasuga-city, Fukuoka 816-8580, Japan
3 Nissan Chemical Industries, Ltd., 2-10-1 Tuboi Nishi, Funabashi, Chiba 274-8507, Japan
Appl. Phys. Lett. (2016) 109, 173301

TiO2 Periodic Table

Waveguide modulator device using organic electro-optic (EO) materials was studied in this research. Samco ICP plasma etcher was used for slot structure formation for TiO2 plasma etching in fluorine chemistry during device fabrication.

02 Nov

Scientific Paper on Nano-channel Device Fabrication Using Quartz Plasma Etching from Nagoya University Team

Samco 2016 Customer, Samco Customer Publication, Silicon/Dielectrics Etch, SiO2 Etch

Identifying DNA methylation in a nanochannel

Xiaoyin Suna,b, Takao Yasuia,b,c, Takeshi Yanagidad,e, Noritada Kajia,b, Sakon Rahonga,b, Masaki Kanaid, Kazuki Nagashimad, Tomoji Kawaie and Yoshinobu Babaa,b,f
a Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Japan;
b ImPAC T Research Center for Advanced Nanobiodevices, Nagoya University, Nagoya, Japan;
c Japan Science and Technology Agency (JST), PRESTO, Saitama, Japan;
d Institute of Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan;
e Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan;
f Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Japan
Science and Technology of Advanced Materials (2016) VOL . 17, NO . 1, 644–649

A new method to analyze DNA methylation was proposed using a nano-channel device in this research. Samco RIE etch tool was used for  quartz plasma etching over Cr hard mask to fabricate nano-channel structures. The nano-channel device is effective to detect single DNA molecule.

SiO2 Periodic Table

For more details of our SiO2 (quartz) plasma etching capabilities, please visit the process data page below.
SiO2 Plasma Etching Process (RIE and ICP Etch)

28 Oct

Scientific Paper on Organic Rectifying Diode Fabrication Using Gold Plasma Treatment by University of Tokyo

Samco 2016 Customer, Gold, Plasma Treatment, Samco Customer Publication, Surface Treatment

A Mechanically Durable and Flexible Organic Rectifying Diode with a Polyethylenimine Ethoxylated Cathode

Naoji Matsuhisa, Hiroaki Sakamoto, Tomoyuki Yokota, Peter Zalar, Amir Reuveny, Sunghoon Lee and Takao Someya
Electrical and Electronic Engineering and Information Systems, University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
Advanced Electronic Materials Volume 2, Issue 10, October 2016

Flexible organic diode device fabrication is performed using Samco process equipment. Samco plasma cleaner PC-300 was used for wettability improvement of polyethylenimine ethoxylated (PEIE) surfaces and for work function improvement of gold (Au) electrode.

Someya lab, University of Tokyo is one of Samco plasma cleaner customers. Our plasma cleaner is used for organic transistor fabrication, and they have published several papers on cutting-edge flexible MEMS devices.

Go to Someya lab website.

Samco plasma cleaners are versatile tools for plasma treatment and cleaning of various materials. For metal surface cleaning, gold plasma treatment is one of the common surface cleaning technique before device packaging. Not only gold but also various metal materials can be processed including aluminum, silver & titanium. We have a special process technique to reduce corrosion risk of metal surfaces caused by plasma cleaning process. Furthermore, multiple shelves inside process chamber enable batch processing of several samples in one time. For more spec details of the plasma cleaners, please visit the product page below.

Plasma Cleaner

25 Oct

Scientific Paper on Diamond MOSFET Fabrication Using Diamond Plasma Etching by NIMS, Japan

Samco 2016 Customer, Diamond Etch, Other Materials Etch, Power Devices, Samco Customer Publication

Design and fabrication of high-performance diamond triple-gate field-effect transistors

Jiangwei Liu 1, Hirotaka Ohsato 2, Xi Wang 1, Meiyong Liao 3 & Yasuo Koide 4
1 International Center for Young Scientists, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
2 Nanofabrication Platform, NIMS, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan.
3 Optical and Electronic Materials Unit, NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
4 Research Network and Facility Services Division, NIMS, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan.
Scientific Reports 6, Article number: 34757 (2016)

Diamond is considered to be a material for next-geneDiamond Periodic Tableration power semiconductor devices due to high thermal conductivity and breakdown voltage. In this research, triple-gate metal-oxide-semiconductor field-effect transistor (MOSFET) device was fabricated using a hydrogenated diamond (H-diamond) substrate. In device fabrication, Samco open-load Reactive Ion Etching (RIE) system at National Institute for Materials Science (NIMS) was used for diamond plasma etching to form a diamond mesa structure.

For our process capabilities of diamond plasma etching, please visit the process data page below.
Diamond Plasma Etching Process Data (RIE Etching & ICP Etching)
Also, for more information on process equipment which are suitable for diamond plasma etching, please visit the product page below,
Reactive Ion Etching (RIE) Systems
ICP Etching Systems

24 Oct

Scientific Paper on AlGaN Plasma Etching by Virginia Commonwealth University

Samco 2016 Customer, AlGaN Etch, Compound Semiconductor Etching, Samco Customer Publication

Surface photovoltage studies of p-type AlGaN layers after reactive-ion etching

J. D. McNamara 1, K. L. Phumisithikul 1, A. A. Baski1, J. Marini 2, F. Shahedipour-Sandvik 2, S. Das 3 and M. A. Reshchikov 1
1 Physics Department, Virginia Commonwealth University, Richmond, Virginia 23284, USA
2 Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York 12203, USA
3 Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, USA
J. Appl. Phys. 120, 155304 (2016)

Nanometer-scale plasma etching of Mg-doped, p-type AlxGa1−xN was performed to remove defective surface region, using Samco ICP-RIE etch system at Virginia Commonwealth University. With plasma etching process with chlorine chemistry, surface defects were successfully removed.AlGaN

Virginia Commonwealth University is one of Samco’s proprietary customers using our systems for AlGaN & GaN plasma etching in AlGaN/GaN device research.
For more details of our plasma etching technologies of GaN, please visit the process data page below.
GaN Plasma Etching Process Data
Also, for more details of our ICP-RIE etch systems, please visit the product page below.
ICP-RIE Etch Systems