Scientific Paper on Diamond MOSFET Fabrication Using Diamond Plasma Etching by NIMS, Japan
Design and fabrication of high-performance diamond triple-gate field-effect transistors
Jiangwei Liu 1, Hirotaka Ohsato 2, Xi Wang 1, Meiyong Liao 3 & Yasuo Koide 4
1 International Center for Young Scientists, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
2 Nanofabrication Platform, NIMS, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan.
3 Optical and Electronic Materials Unit, NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
4 Research Network and Facility Services Division, NIMS, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan.
Scientific Reports 6, Article number: 34757 (2016)
Diamond is considered to be a material for next-generation power semiconductor devices due to high thermal conductivity and breakdown voltage. In this research, triple-gate metal-oxide-semiconductor field-effect transistor (MOSFET) device was fabricated using a hydrogenated diamond (H-diamond) substrate. In device fabrication, Samco open-load Reactive Ion Etching (RIE) system at National Institute for Materials Science (NIMS) was used for diamond plasma etching to form a diamond mesa structure.
For our process capabilities of diamond plasma etching, please visit the process data page below.
Diamond Plasma Etching Process Data (RIE Etching & ICP Etching)
Also, for more information on process equipment which are suitable for diamond plasma etching, please visit the product page below,
Reactive Ion Etching (RIE) Systems
ICP Etching Systems